Real Analysis HW5

P70 Q19: Proof. Let D be a dense set of real numbers and let f be an extended real-valued function on \mathbb{R} such that $\{x: f(x)>\alpha\}$ is measurable for each $\alpha \in D$. Let $\beta \in \mathbb{R}$. For each n,there exists $\alpha_{n} \in D$ such that $\beta<\alpha_{n}<\beta+1 / n$. Now $\{x: f(x)>\beta\}=\cup\{x: f(x) \geq \beta+1 / n\}=\cup\left\{x: f(x)>\alpha_{n}\right\}$ so $\{x: f(x)>\beta\}$ is measurable and f is measurable.

P71 Q24: Let $P=\left\{A: f^{-1}(A) \in \mathcal{M}\right\}$. We claim that P is a sigma algebra which contains open sets. Clearly, $\emptyset \in P$. Suppose $B \in P, f^{-1}(B) \in \mathcal{M}, f^{-1}\left(B^{c}\right)=\left[f^{-1}(B)\right]^{c} \in$ \mathcal{M}. If $B_{i} \in P, f^{-1}\left(B_{i}\right) \in \mathcal{M}$. Then $f^{-1}\left(\cap B_{i}\right)=\cap_{i} f^{-1}\left(B_{i}\right) \in \mathcal{M}$. Let G be an open set. Write $G=\cup I_{i}$ to be disjoint union of open intervals. By definition of measurabilty, $I_{i} \in P$ and hence G.

P71 Q25 By continuity, $g^{-1}(a,+\infty)$ is open set. By previous Quesition, $f^{-1} g^{-1}(a,+\infty)$ is measurable.

P73 Q29 Take $f_{n}=\chi_{[n, \infty)}$ on the whole real line. For any $A, m(A)<1$. We can find $x_{k} \rightarrow \infty$ which is outside A.

P74 Q31 By simple approximation theorem, we can find simple function $s_{n} \rightarrow f$. By Q3, for each s_{n}, we can find continuous function g_{n} defined on $[a, b]$, a closed set $F_{n} \subset[a, b]$ such that $m\left([a, b] \backslash F_{n}\right)<\delta / 10^{n}$ and $s_{n}=g_{n}$ on F_{n}. On the other hand, we can find $F_{0} \subset[a, b]$ such that s_{n} converges to f uniformly on F_{0} and $m\left([a, b] \backslash F_{0}\right)<\delta / 2$. Define $F=\cap_{i=0}^{\infty} F_{i}$ where $m([a, b] \backslash F)<\delta$. Moreover, on $F, s_{n}=g_{n}$ converges to f uniformly as $F \subset F_{0}$. Hence the limit function f is continuous. If the domain is \mathbb{R}, then we splits it into $[n, n+1]$. On each interval, we can use the above argument to find a continuous function on $[n, n+1]$ which approximate f. The problems arise when we glue them together which may not be continuous. However, we can modify the function around $x=n$. For instance, we give a example here. Given two continuous functions $f:[0,1] \rightarrow \mathbb{R}$ and $g:[-1,0] \rightarrow \mathbb{R}$. Let $\epsilon>0$, we define

$$
F(x)= \begin{cases}f(x) & \text { if } x \in[\epsilon, 1] \\ g(x) & \text { if } x \in[-1,-\epsilon] \\ a x+b & \text { if } x \in[-\epsilon, \epsilon]\end{cases}
$$

We choose a, b so that $F(x)$ is continuous function. To achieve our goal, it suffices to perform the above steps at each $x=n$ and take $\epsilon_{n}=\delta / 100^{|n|}$.

The rest of solution can be found on the lecture note.

